SLU news

Compostable plastics from potatoes

Published: 06 December 2016
DSC_6298_Faraz Muneer.JPG

Researchers have developed a new sustainable material from potato starch – a material that can replace the plastics we use today. The starch comes from a genetically modified potato. Starch molecules in this potato have more of the long chains of glucose that give the starch fiber-like properties.

”It’s soft, not so stiff, and it has a high potential to become something important in the future.”

Researcher Mariette Andersson describes the material that she and her colleagues have made from the starch of a genetically modified potato. This plastics can be composted after using it. Furthermore, the starch has now been used as a part of a composite material. By tailoring mixtures of plant proteins and starch, molecularly and biochemically, one can design sustainable materials for various uses including packaging and plastic film.

In two recent studies Mariette Andersson and colleagues have tested how this particular potato starch works with proteins from wheat (gluten, gliadin and glutenin which are possible components of the new material). The idea is to develop a stretchable and strong material. They used either glycerol or glycerol + water as plasticizer and extruded the plastics at two different temperatures, 110 °C and 130 °C. In the analysis, they could see that the different proteins reacted in different ways in combination with the starch. In some cases, the material became relatively soft and flexible, and in other cases, stronger and less soft.

The higher temperature induced a higher degree of protein cross-links. With glycerol + water as plasticizer, the starch got improved gelatinous properties, and the material became stronger, more stretchable and easier to process (compared to using only glycerol).  

They also tested what happened to the protein structure at the nanometer level (a level that is one millionth of a millimeter), the mechanical strength of the plastics, and if the material let oxygen molecules to pass through. Some of the gliadin molecules adopted an unusual hexagonal structure in mixtures with starch, and this structure made the material stronger. The combinations of protein + starch worked well as an oxygen barrier.

Ordinary potato starch, consists of molecules with both short and long chains of glucose. The starch molecule amylose has long linear chains of glucose while the amylopectin molecule has a highly branched structure. Native potato starch contains 20-30 percent amylose and 70-80 percent amylopectin.

Using biotechnology, the researchers decreased the levels of two enzymes regulating the branching of starch molecules in potato. This modification increased the glucose chain length of the amylopectin molecules. Thanks to this, the starch got the fiber-like properties that make it suitable as a component of a new environmentally friendly packaging material.

Researchers at the Swedish University of Agricultural Sciences, KTH Royal Institute of Technology, Innventia AB, MAX IV Laboratory in Lund and Institut Polytechnique in France did this study with funding from Mistra Biotech, TC4F, Lyckeby Starch AB, Formas and Partnerskap Alnarp.

More information:, +46 (0)40-415541, +46 (0)40-415337, +46 (0)18-672232


+46 (0)18 672232

Page editor: