CV-sida

Geert Cornelis

Geert Cornelis
Reseacher that develops software tools for analytical chemistry, experimental analysis and modelling of the fate of particles in the Environment, including inorganic nanomaterials, colloid mediated transport of metals and phosphate.

Presentation

Geert Cornelis (MSc Environmental Engineering, Ph.D. Chemical Engineering) finished his PhD. dissertation at KULeuven (Belgium) on geochemistry of oxyanion forming metals and metalloids in alkaline wastes. His post-docs where with Mike McLaughlin (University of Adelaide, Australia) on the fate of nanoparticles in natural soils and with Martin Hassellöv (University of Gothenburg, Sweden) on sensitive detection methods for nanoparticles in environmental samples (single-particle ICP-MS, FFF-ICP-MS). He currently researches the fate of nanoparticles and colloid-associated metals in soils at the Swedish University of Agricultural Sciences in Uppsala.

Undervisning

In the past, I have taught a course in advanced analytical chemistry (Göteborgs Universitet). I now teach a Masters course in geochemistry at SLU as well as Academic writing in research school "Focus on soils and waters".

Forskning

I am involved in two several EU (Horizon 2020) projects on environmental risk assessment of engineered nanomaterials (NMs). One project (NANOfase) focuses on modelling transport and bio-uptake of NMs in the natural environment, where I am the work package leader on the soils compartment. Another project (ACENano) focuses on advancing the state-of-the-art in nanometrology, where I focus on advancing single-particle ICP-MS, both in therms of software and hardware. I have developend several data treatment algorithms and developed the interactive software Nanocount for spICPMS data treatment, which can be downloaded freely.

A large subject area is the fate of NMs in terrestrial systems, where I seek to develop standard protocols for kinetic fate descriptors of NMs and then use these descriptors to model the bioavailability and transport of NMs in soils. This knowledge can alos be used to develop terrestrial nano-applications such as phosphate nanofertizliers, which is an emerging topic for me.

I am also invovled in two Swedish national projects that seek to characterise and model the colloidal transport of metals and phosphate in either heavily contaminated soils or agricultural soils. I use field flow fractionation for analysing colloids sampled in-situ. These analyses can be used to better understand the speciation of metals or phosphate, that are often bound to colloids in soil pores. While the fraction smaller than 0.45 um is often considered dissolved, colloids are usually smaller than this size and behave totally different than truly dissolved species. As for NMs, kinetic fate descritpors are also being developed to improve the predictability of the transport of these particles.

Miljöanalys

I am an expert in metals analysis using ICP-MS, nanomaterial analysis using single-particle ICP-MS, colloid characterisation using Asymmetrical Flow field flow fractionation (AF4) coupled to MALS, DLS and ICP-MS. I also have experience with various light scattering techniques (DLS, MALS, NTA) as well as microscopy (TEM, SEM, AFm). I am responsable for a metals and particle analysis lab that consists of a Perkin Elmer Nexion 350 D, a PostNova AF4 and a Malvern DLS.

Samverkan

Current international collaboration is wirhin the Europan projects NANOFase and AceNANO, as until recently in the COST Action ENTER.I have also been active as non-PI (post-doc) the European projects MARINA, Nanofate and GuideNANO.

Active collaborations thus span over mostly Europe, for instance the University of Copenhagen in Denmark (Bjarne Strobl), CEH in the UK (Claus Svendsen, Dave Spurgeon, Steve Lofts), Unviersity of Birmingham in the UK (Iseult Lynch, Eva Valsami-Jones), Universite de Geneve in Switserland (Serge Stoll and Marianne Seijo) and Wageningen University (Nico an den Brink). Ouside of Europe, I mainly collaborate with the University of Adelaide in Australia (Frank Reith, Mike McLaughlin), NMI in Australia (Åsa Jamting), Duke University in USA (Mark Wiesner) and the Catholic University of Leuven in Belgium (Erik Smolders)

Bakgrund

September 2008: PhD. in Chemical Engineering. (KULeuven, Belgium). Ph.D. thesis: "Leaching mechanisms of oxyanionic metal and metalloid species in alkaline solid wastes."

June 2003: Additional Master in Environmental Science and Technology. (KULeuven, Belgium, Cum Laude). Masters thesis: The influence of carbonation on the leaching of cement-bound waste.

June 2002: Master in Environmental Engineering. (KULeuven, Belgium, Cum Laude). Major: Soil conservation and remediation, Minor: Tropical Agriculture.               Masters thesis: The relation between abiotic soil parameters and biodiversity in wet heathlands

June 2000: Bachelor in Applied Biological Sciences (KULeuven, Belgium)

Handledning

Main supervision:

Jani Tuoriniemi: Post-doc, Swedish University of Agricultural Sciences (Started 2018):
Developing data treatment algorithms for spICP-MS.
Knapp Karin Norrfors: Post-doc, Swedish University of Agricultural Sciences (Started 2016): Column tests and modelling of engineered nanoparticles in soils.
Jenny Perez-Holmberg: Post-doc, University of Gothenburg (2014-2016): Empirical models for nanoparticle fate in wastewater treatment plants and agricultural soils.
Cornelia Berglund, Anna-Maria Forsberg Grivogiannis, Nils-Petter Sköld: Master students
Eline Goossens: Bachelor Student

Co-supervision:
Åsa Löv, Ph.D. thesis started 2013, SLU, Sweden: The effects of climate change on leaching of colloid-bound metals from contaminated sites.
Jessica Bollyn, Ph.D. thesis 2013-2017, KULeuven, Belgium: Alumium and iron oxides nanoparticles as carriers for phosphate in andosols and oxisols.
Casey Doolette, Ph.D. thesis 2012-2016, University of Adelaide, Australia: The fate of silver nanoparticles in wastewater treatment plants and soils.
Julian Gallego-Urrea, Ph.D. thesis 2009-2014, Gothenburg University, Sweden: On the exposure assessment of engineered nanoparticles in aquatic environments.
Jani Tuoriniemi, Ph.D. thesis 2008-2013, Gothenburg University, Sweden: New single particle methods for detection and characterization of nanoparticles in environmental samples.
Narges Milani, Ph.D. thesis 2008-2012, University of Adelaide, Australia: Zinc oxide nanoparticles in the soil environment : dissolution, speciation, retention and bioavailability

Daily supervision over 2 Honours’ theses (University of Adelaide); 7 Master theses (KULeuven, Belgium).

Publikationer i urval

Gondikas, A.; von der Kammer, F; Kaegi, R.; Borovinskaya, O.; Neubauer, E.; Navratilova, J.; Praetorius, A.; Cornelis, G.; Hofmann, T. 2018. Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environmental Science: Nano. 5, 313-326.

Cornelis, G.; Forsberg, A.M.; Sköld, N.P.; Rauch, S.; Perez-Holmberg, J., 2017. Sludge concentration, shear rate and nanoparticle size determine silver nanoparticle removal during wastewater treatment. ES Nano. 4, 2225-2234.

Reith, F.; Cornelis, G., 2017. Effect of soil properties on gold- and platinum nanoparticle mobility. Chem. Geol. 466, 446-453.

Tharaud, M.; Gondikas, A.P.; Benedetti, M.F.; von der Kammer, F.; Hofmann, T.; Cornelis, G. 2017 TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment. . J. Anal. Atom. Spectr. 32,1400-1411.

Bollyn, J.; Nijsen, M.; Faes, J.; Cornelis, G.; Smolders, E. 2016. Polyphosphates and fulvates enhance environmental stability of PO4 bearing colloidal iron oxyhydroxides. J. Agric. Food Chem. 64(45) 8465-8473.

Cornelis, G. 2015: Fate descriptors for engineered nanoparticles: the good, the bad, and the ugly. Environmental Science: Nano 2015, 2, 19-26.

Cornelis, G.; Hund-Rinke, K.M; Kuhlbusch, T.; Van den Brink, N.; Nickel, C., 2014. Fate and bioavailability of engineered nanoparticles in soils: a review. Crit. Rev. Environ. Sci. Technol. 44: 2720–2764.

Cornelis, G.; Hassellöv, M. 2014. A signal deconvolution method to discriminate smaller nanoparticles in single particle ICP-MS. J. Anal. Atom. Spectr. 29 (1), 134 – 144.

Cornelis, G.; Etschmann, B.; Van Gerven, T.; Vandecasteele, C., 2012. Mechanisms and modeling of antimonate leaching in hydrated cement paste suspensions. Cem. Concr. Res. 42(10) 1307-1316.

Oorts K., Degryse F., Mertens J., Gasco G., Cornelis G., Smolders E., 2008. Solubility and Toxicity of antimony trioxide (Sb2O3) in soil. Environ. Sci. Technol. 42, 4378-4383.

Cornelis, G.; Ryan, B.; McLaughlin, M.J.; Kirby, J.K.; Beak, D.; Chittleborough, D. 2011. Solubility and batch retention of CeO2 nanoparticles in soils. Environ. Sci. Technol. 45(7), 2777-2782.

 


Kontaktinformation
Forskare vid Institutionen för mark och miljö; Mark och miljö, Markkemi
Telefon: 018-671268

Publikationslista: