Geert Cornelis

Geert Cornelis
Reseacher that investigates the analysis, geochemistry and transport of particles in soils by developing software tools and models. The investigated particles include natural colloids, micro/nanoplastics and engineered nanoparticles. The models are used for greenhouse gas emission predictions, risk assessment and soil remediation.


Geert Cornelis (MSc Environmental Engineering, Ph.D. Chemical Engineering) finished his PhD. dissertation at KULeuven (Belgium) on geochemistry of oxyanion forming metals and metalloids in alkaline wastes. His post-docs where with Mike McLaughlin (University of Adelaide, Australia) on the fate of nanoparticles in natural soils and with Martin Hassellöv (University of Gothenburg, Sweden) on sensitive detection methods for nanoparticles in environmental samples (single-particle ICP-MS, FFF-ICP-MS). He currently researches the fate of engineered nanoparticles, nanoplastics and colloid-associated metals in soils at the Swedish University of Agricultural Sciences in Uppsala. He develops software tools such as Nanocount for particle analysis interpretation and particle transport predictions by combining colloidal chemistry with bioturbation modelling. These tools are to be used in the context of risk assessment, soil remediation and greenhosue gas emmission predictions.


I currently lead the Master-level course "environmental geochemistry" at SLU and teach within the Ph.D.-level course "Academic writing". In the past,  I have taught a course in advanced analytical chemistry (Göteborgs Universitet).


I am and have been involved in several EU (Horizon 2020/FP7) projects on analysis and environmental risk assessment of engineered nanomaterials (NMs). I have, amongst others, developed more accurate models for transport and bio-uptake of NMs in the natural environment and soils in particular. A strong focus was on improving functional fate assays of nanoamterials in soils for which I also supported the OECDs efforts to standardise nanomaterial fate assessment in soil (TG312). I have advanced single-particle ICP-MS as the most efficient tool to quanitfy size and number concentration of inorganic nanomaterials in complex matrices. I have adapted this technique for solid samples by coupling it to laser ablation. I have developed  the interactive software Nanocount for spICPMS data treatment, which can be downloaded freely. I have also been involved in two Swedish national projects that seek to characterise and model the colloidal transport of metals and phosphate in either heavily contaminated soils or agricultural soils. I use field flow fractionation for analysing colloids sampled in-situ

My current research focuses on using sulfidated and non-sulfidated zerovalent iron micro- and nanoparticles for remdiation soils contamianted with arsenic. I also lead a Ph.D. project on understandign and modellign the fate of nano- and mciroplastics in agricultrual soils where earthworm bioturbation is an important topic.


I am an expert in metals analysis using ICP-MS, nanomaterial analysis using single-particle ICP-MS, colloid characterisation using Asymmetrical Flow field flow fractionation (AF4) coupled to MALS, DLS and ICP-MS. I also have experience with various light scattering techniques (DLS, MALS, NTA) as well as microscopy (TEM, SEM, AFm). I am responsable for a metals and particle analysis lab that consists of a Perkin Elmer Nexion 350 D, a PostNova AF4 and a Malvern DLS.


Current international collaboration is wirhin the Europan project AceNANO. I have also been active in the European projects NanoFASE, NanoFATE, GuideNANO and MARINA. I contribute to standard development by the OECD and regularly chair sessions on on nanomaterials and microplastics during SETAC Europe conferences.

Active collaborations thus span over mostly Europe, for instance, CEH in the UK (Claus Svendsen, Dave Spurgeon, Steve Lofts), University of Birmingham in the UK (Iseult Lynch, Eva Valsami-Jones), Universite de Geneve in Switserland (Serge Stoll and Marianne Seijo) and Wageningen University (Nico an den Brink). Ouside of Europe, I mainly collaborate with the University of Adelaide in Australia (Frank Reith, Mike McLaughlin), NMI in Australia (Åsa Jamting), Duke University in USA (Mark Wiesner) and the Catholic University of Leuven in Belgium (Erik Smolders)


December 2018: Docent in Soil Science. (SLU, Sweden).

September 2008: PhD. in Chemical Engineering. (KULeuven, Belgium). Ph.D. thesis: "Leaching mechanisms of oxyanionic metal and metalloid species in alkaline solid wastes."

June 2003: Additional Master in Environmental Science and Technology. (KULeuven, Belgium, Cum Laude). Masters thesis: The influence of carbonation on the leaching of cement-bound waste.

June 2002: Master in Environmental Engineering. (KULeuven, Belgium, Cum Laude). Major: Soil conservation and remediation, Minor: Tropical Agriculture.               Masters thesis: The relation between abiotic soil parameters and biodiversity in wet heathlands

June 2000: Bachelor in Applied Biological Sciences (KULeuven, Belgium)


Main supervision:

Wiebke Mareile Heinze: Ph.D. student (SLU) started 2020
Jani Tuoriniemi: Post-doc (SLU) 2018-2019. 
Knapp Karin Norrfors: Post-doc (SLU) 2016-2018.
Jenny Perez-Holmberg: Post-doc (Gothenburg University) 2014-2016.
1 Bachelor Student


Åsa Löv: Ph.D. (SLU) 2013-2019.
Jessica Bollyn: Ph.D. (KULeuven, Belgium) 2013-2017.
Casey Doolette: Ph.D. (University of Adelaide, Australia) 2012-2016.
Julian Gallego-Urrea: Ph.D. (Gothenburg University) 2009-2014.
Jani Tuoriniemi: Ph.D. (Gothenburg University) 2008-2013.
Narges Milani: Ph.D. (University of Adelaide, Australia) 2008-2012.
2 Honours’ theses (University of Adelaide); 7 Master theses (KULeuven, Belgium).

Publikationer i urval

Tuoriniemi, J.; Holbrook, T.R., Cornelis, G.; Schmitt, M.; Stärk, H.J.; Wagner, S. 2020. Measurement of Number Concentrations and Sizes of Au Nano-particles Spiked Into Soil by Laser Ablation Single Particle ICP-MS. J. Anal. Atom. Spectr. 35, 1678-1686.

Svendsen, C., Walker, L., Matzke, M., Lahive, E., Harrison, S.; Crossley, A.; Park, B.; Lofts, S.; Lynch, I.; Vázquez-Campos, S.; Kaegi, R.; Gogos, A.; Asbach, C.; Cornelis, G.; von der Kammer, F.; van den Brink, N.; Mays, C.; Spurgeon, D.J. 2020. Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nature Nano. 15, 731-742.

Geitner, N.K.; Hendren, C.O.; Cornelis, G.; Kaegi, R.; Lead, J.E.; Lowry, G.; Lynch, I.; Nowack, B.; Petersen, E.; Bernhardt, E.; Brown, S.; Chan, W.; de Garidel-Thoron, C.; Hanson, J.; Harper, S.; Jones, K.; von der Kammer, F.; Kennedy, A.; Kidd, J.; Matson, C.; Metcalf, C.; Pedersen, J.; Peijnenburg, W.J.G.M.; Quik, J.T.K.; Rodrigues, S.M.; Rose, J.; Sayre, P.; Simonin, M.; Svendsen, C.; Tanguay, R.; Tufenkji, N.; van Teunenbroek, T.; Thies, G.; Tian, Y.; Rice, J.; Turner, A.; Liu, J.; Unrine, J.; Vance, M.; White, J.C.; Wiesner, M.R. 2019. Harmonizing Across Environmental Nanomaterial Testing Media for Increased Comparability of Nanomaterial Datasets. Environ. Sci.: Nano 7, 13-36.

Baccaro, M.; Harrison, S.; van den Berg, H.; Sloot, L.; Hermans, D.; Cornelis, G.; van Gestel, C.A.M.; van den Brink, N. 2019. Bioturbation of Ag2S-NPs in soil columns by earthworms. Environmental Pollution 252. 155-162.Gondikas, A.; von der Kammer, F; Kaegi, R.; Borovinskaya, O.; Neubauer, E.; Navratilova, J.; Praetorius, A.; Cornelis, G.; Hofmann, T. 2018. Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environmental Science: Nano. 5, 313-326.

van den Brink, N.; Kokalj, A.J.; Silva, P.; Lahive, E.; Norrfors, K.; Baccaro, M.; Khodaparast, Z.; Loureiro, S.; Drobne, D.; Cornelis, G.; Lofts, S.; Handy, R.D.; Svendsen, C.; Spurgeon, D.; van Gestel, C.A.M., 2019. Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms. Environmental Science: Nano 6. 1985-2001.

Löv, Å; Larsbo, M.; Sjöstedt, C.; Cornelis, G.; Gustafsson, J.P., Kleja, D.B., 2019. Evaluating the ability of standardised leaching tests to predict metal(loid) leaching from intact soil columns using size-based elemental fractionation. Chemosphere 222. 453-460.

Cornelis, G.; Forsberg, A.M.; Sköld, N.P.; Rauch, S.; Perez-Holmberg, J., 2017. Sludge concentration, shear rate and nanoparticle size determine silver nanoparticle removal during wastewater treatment. ES Nano. 4, 2225-2234.

Gondikas, A.; von der Kammer, F; Kaegi, R.; Borovinskaya, O.; Neubauer, E.; Navratilova, J.; Praetorius, A.; Cornelis, G.; Hofmann, T. 2018. Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environmental Science: Nano. 5, 313-326.

Reith, F.; Cornelis, G., 2017. Effect of soil properties on gold- and platinum nanoparticle mobility. Chem. Geol. 466, 446-453.

Tharaud, M.; Gondikas, A.P.; Benedetti, M.F.; von der Kammer, F.; Hofmann, T.; Cornelis, G. 2017 TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment. . J. Anal. Atom. Spectr. 32,1400-1411.

Bollyn, J.; Nijsen, M.; Faes, J.; Cornelis, G.; Smolders, E. 2016. Polyphosphates and fulvates enhance environmental stability of PO4 bearing colloidal iron oxyhydroxides. J. Agric. Food Chem. 64(45) 8465-8473.

Cornelis, G. 2015: Fate descriptors for engineered nanoparticles: the good, the bad, and the ugly. Environmental Science: Nano 2015, 2, 19-26.

Cornelis, G.; Hund-Rinke, K.M; Kuhlbusch, T.; Van den Brink, N.; Nickel, C., 2014. Fate and bioavailability of engineered nanoparticles in soils: a review. Crit. Rev. Environ. Sci. Technol. 44: 2720–2764.

Cornelis, G.; Hassellöv, M. 2014. A signal deconvolution method to discriminate smaller nanoparticles in single particle ICP-MS. J. Anal. Atom. Spectr. 29 (1), 134 – 144.

Cornelis, G.; Etschmann, B.; Van Gerven, T.; Vandecasteele, C., 2012. Mechanisms and modeling of antimonate leaching in hydrated cement paste suspensions. Cem. Concr. Res. 42(10) 1307-1316.

Oorts K., Degryse F., Mertens J., Gasco G., Cornelis G., Smolders E., 2008. Solubility and Toxicity of antimony trioxide (Sb2O3) in soil. Environ. Sci. Technol. 42, 4378-4383.

Cornelis, G.; Ryan, B.; McLaughlin, M.J.; Kirby, J.K.; Beak, D.; Chittleborough, D. 2011. Solubility and batch retention of CeO2 nanoparticles in soils. Environ. Sci. Technol. 45(7), 2777-2782.



Google scholar:


Universitetslektor vid Institutionen för mark och miljö; Markkemi
Telefon: +4618671268, +46730693668
Box 7014
750 07 Uppsala
Besöksadress: Lennart Hjelms väg 9, Uppsala