Ongoing projects

Last changed: 21 April 2023

Does sustained yield of forest biomass result in a carbon sink at the forest landscape scale?

The project goal is to estimate the full carbon balance of a managed boreal forest landscape (i.e. the Krycklan catchment) using tall tower eddy covariance measurements and bottom-up scaling based on detailed plot-level measurements of terrestrial and aquatic carbon fluxes combined with high-resolution Lidar data. Project period: 2016-2018

Funded by Formas

Ecosystem carbon and water fluxes in boreal forests

This project explores the ecosystem carbon and water fluxes at the Rosinedal and Svartberget forests using the eddy covariance technique. At Rosinedal, we also investigate the effect of ecosystem-scale N addition on these fluxes. The project is part of the Wallenberg project: Branchpoints.

Funded by the Wallenberg Foundation

Exploring the Greenhouse Gas Balance of a Boreal Forest Landscape using Tall Tower Eddy Covariance Measurements

With the tall tower eddy covariance measurements of CO2, CH4, and H2O fluxes (Svartberget), the GHG budgets can be derived directly for the Krycklan catchment on the landscape-scale. In addition, local source and sink contributions to this direct landscape-scale estimate will be investigated via advanced footprint modeling.

Funded by the Kempe Foundation

How does rewetting affect the greenhouse gas balance of drained peatland forests in boreal Sweden?

The overall aim of this project is to investigate how rewetting affects the GHG balance of drained peatland forests in boreal Sweden. This will be achieved by eddy covariance measurements of the ecosystem-scale CO2 and CH4 exchanges in work package 1 (WP1), combined with estimates of spatial variability from plot-scale GHG flux measurements across replicated sites in WP2. In WP3, the separate responses of the individual net CO2 exchange component fluxes will be determined.

Funded by Formas

Towards climate-responsible forestry: Assessing the greenhouse gas balances of drained and restored peatland forests in boreal Sweden

The main goal of this project is to estimate and compare the GHG balances (including CO2 and CH4 exchanges) of drained and restored peatland forests in boreal Sweden. The specific project objectives are to: (1) obtain direct measurements of the full annual ecosystem-scale GHG balance of a drained nutrient-poor peatland forest, (2) determine the impact of restoration activities (i.e. rewetting) on the GHG balance of drained peatland forests, (3) identify the factors that govern the spatio-temporal dynamics of CO2 and CH4 exchanges in drained and restored peatland forests.

Funded by Skogssällskapet

Understory carbon and water budgets in boreal forests measured from the below-canopy eddy covariance towers.

Boreal forest floor plays an significant role in the ecosystem-scale carbon and water dynamics in boreal forests. However, accurate quantification of understory's contribution is quite challenging due to e.g. non-ideal conditions for the below-canopy eddy covariance measurements. In my project, I will use the direct below-canopy eddy covariance towers as well as manual chamber measurements to assess the carbon and water budgets of forest floors in two contrasting boreal forests, Svartberget and Rosinedal, respectively, to provide a better understanding of the mechanisms in carbon and water cycles in boreal forest ecosystems.

Funded by the Kempe Foundation