Kontaktinformation
Institutionen för skogens biomaterial och teknologi (SBT), Teknologi
Hos oss kan du arbeta med industriella försörjningskedjor, inkluderande föryngring, skogsbruksaspekter, automatisering samt hantering av skörd och logistik för råvaror. Du kan även arbeta med karaktärisering och förädling av biomassa för olika typer av biodrivmedel och andra biobaserade produkter. Inom området trävetenskap går det också att fördjupa sig i träanatomi och fiberstrukturer, inklusive aspekter av trämaterialets bearbetning och modifiering.
Examensarbete kan göras inom Jägmästarprogrammet eller som fristående kurs. Du kan välja att göra ett arbete på 30 hp eller 60 hp. Examensarbeten erbjuds året runt och det finns en stor flexibilitet i hur arbetet kan läggas upp.
Ämnesmässigt kopplar våra arbeten och expertis till våra huvudområden Skogsvetenskap och Teknologi.
Nedan hittar du information om lediga examensarbeten och länkar till hur arbetet går till väga. Klicka på de olika förslagen nedan för att läsa mera och se namn på kontaktpersoner.
Du kan alltid kontakta Thomas Kronholm, som är kursansvarig hos oss, så hjälper han dig vidare med din idé och sätter dig i kontakt med rätt person.
Här finns även mer information kring hur det går till att skriva examensarbete.
Välkommen att höra av dig!
The forestry sector remains heavily reliant on fossil fuels for machinery operation, posing a significant challenge to achieving climate-neutral wood-supply. One of the main obstacles to transitioning toward renewable or low-emission fuel alternatives is the lack of a decentralized and responsive energy supply infrastructure for fuel alternatives. Effective planning for such systems requires accurate knowledge of site-specific fuel consumption, which in turn depends on a range of external and operational factors—including terrain slope, soil moisture, surface roughness, weather conditions, and seasonal variability.
This thesis project aims to harness the power of deep learning and geospatial data integration to predict energy usage and emissions in forestry operations. By developing a model that can generalize across harvesting sites with varying conditions, this work will contribute to more informed planning and benchmarking of sustainable forest management practices, particularly in regions like Northern Sweden where challenging terrain is common.
You will develop and train a deep learning model that predicts energy consumption (and potentially emissions) based on a set of geospatial and operational parameters collected from real-world forest harvesting sites. Key aspects of your task include:
We recommend this project as a 30 credit Master’s thesis, given the complexity and technical depth of the task.
The degree project is to be done in English.
This thesis is for example well-suited for students in -Industrial Wood Supply Management. You should have:
• A strong interest in AI, deep learning, or geospatial data analysis.
• Programming experience, preferably in Python with knowledge of deep learning libraries such as PyTorch or TensorFlow.
• Familiarity with or willingness to learn about forestry operations and terrain modeling.
• Curiosity to work at the interface of machine learning, sustainability, and field-level forestry data.
• The ability to work independently and handle real-world, possibly incomplete datasets.
• A relevant research topic that supports the energy transition of the Swedish forestry sector.
• Possibility of contributing to the scientific research of the department as the results of the degree project will be incorporated into a scientific publication, where the student can of course become a co-author.
For more information about the project, contact Justin Herdegen.
E-mail: justin.herdegen@slu.se
Telefon: +46722392528
The forestry sector is currently heavily dependent on fossil fuels for machinery operation. A major barrier to switching to renewable and low-emission fuel alternatives is the need for a decentralised energy supply system. In order to plan for this, it is essential to know how many forestry sites are active, where they are located, how they vary and how they develop over time.
In regions like Sweden, where clear-cut operations dominate forest harvesting practices, these worksites are highly dynamic and influenced by seasonal, economic, and environmental conditions. Yet, detailed knowledge on their spatio-temporal distribution and variation is often fragmented or unavailable.
To address this gap, this thesis project proposes a data-driven spatial analysis of forestry operations using national Vektor-map data from the Swedish Forest Agency (Skogsstyrelsen), supplemented where possible with industry data. The aim is to identify clusters and trends in worksite activity, explore site-specific differences, and establish a georeferenced database to support the future design of low-emission fuel supply chains tailored to forestry operations.
Your main objective will be to build a comprehensive database of forestry worksites (primarily clear-cuts) and perform a spatio-temporal clustering and pattern analysis. (Recommended as a 15 Credit Bachelor-Thesis) Specifically, you will:
If conducted as a 30 Credit - Master-Thesis:
• Explore the link between worksites and wood storage or loading hubs, which are potential energy supply points.
• Optionally, include thinning operations in the analysis and assess how they influence spatial and temporal patterns when considered alongside clear-cuts.
• Compare patterns using similar datasets from other countries (e.g., the UK Forestry Commission’s Public Register) for a broader comparative perspective.
The degree project is to be done in English.
This thesis is for example well-suited for students in Skogsvetarprogrammet // Skogsekonomiprogrammet // Industrial Wood Supply Management-program.
You should have:
•Strong interest in forest operations, logistics.
•Basic to intermediate knowledge of GIS tools (e.g., QGIS, ArcGIS).
•Experience with programming or scripting, preferably in Python.
•Familiarity with data processing and clustering techniques (e.g., SQLite, DBSCAN) is advantageous
•Motivation to work with large spatial datasets and derive practical insights from real-world operations.
•Ability to work independently and to solve problems effectively.
•A relevant research topic that supports the energy transition of the Swedish forestry sector.
•Possibility to contribute to the scientific research of the department as the results of the degree project will be incorporated into a scientific publication, where the student can of course become a co-author.
For more information about the project, contact Justin Herdegen.
E-mail: justin.herdegen@slu.se
Telefon: +46722392528
Här kan du läsa examensarbeten som publicerats vid vår institution.